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Lattice Uniformities on Effect Algebras
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Let L be a lattice ordered effect algebra. We prove that the lattice uniformities on L

which make uniformly continuous the operations � and ⊕ of L are uniquely determined
by their system of neighborhoods of 0 and form a distributive lattice. Moreover we prove
that every such uniformity is generated by a family of weakly subadditive [0, +∞]-
valued functions on L.
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1. INTRODUCTION

Effect algebras have been introduced by Foulis and Bennett (1994) for mod-
eling unsharp measurement in a quantum mechanical system. They are a gener-
alization of many structures which arise in quantum physics (see Beltrametti and
Cassinelli, 1981) and in Mathematical Economics (see Butnariu and Klement,
1993; Epstein and Zhang, 2001), in particular of orthomodular lattices in non-
commutative measure theory and MV-algebras in fuzzy measure theory. After
1994, there have been a great number of papers concerning effect algebras (see
Dvurečenskij and Pulmannová, 2000, for a bibliography).

In this paper we study D-uniformities on a lattice ordered effect algebra L,
i.e. lattice uniformities on L which make uniformly continuous the operations �
and ⊕ of L.

The starting point of our paper is observing the key role played by D-
uniformities in the study of modular measures on L (see Avallone, 2001; Avallone
et al., 2003; Avallone and Basile, 2003), since every modular measure on L gener-
ates a D-uniformity. Also of importance is the role played in the study of modular
functions on orthomodular lattices (see Weber, 1995) and of measures on MV-
algebras (see Barbieri and Weber, 1998; Graziano, 2000) by the lattice structure
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of filters which generate lattice uniformities making uniformly continuous the
operations of these structures.

In the first part of the paper, we give a description of the filters which
are systems of neighbourhoods of 0 in D-uniformities on L—called D-filters—
and we prove that there exists an order isomorphism between the lattice of all
D-uniformities on L and the lattice of all D-filters on L. In particular every D-
uniformity is uniquely determined by its system of neighbourhoods of 0. As a
consequence, we obtain that the lattice of all D-uniformities on L is distributive.

Our results extend similar results of Weber (1995) in orthomodular lattices
(see also Avallone and Weber, 1997) and of Barbieri and Weber (1998) and
Graziano (2000) in MV-algebras, and give as particular case the order isomorphism
found in Avallone and Vitolo (2003) between some lattice congruences and some
lattice ideals.

In the second part of the paper, we apply the results of the first part to prove
that every D-uniformity on L is generated by a family of weakly subadditive
[0,+∞]-functions on L.

2. PRELIMINARIES

An effect algebra Dvurečenskij and Pulmannová, (2000) is a set E, with two
distinguished elements 0 and 1, and a partially defined operation ⊕ such that for
all a, b, c ∈ E:

(E1) If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a.
(E2) If b ⊕ c is defined and a ⊕ (b ⊕ c) is defined, then a ⊕ b and (a ⊕ b) ⊕ c

are defined, and a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c.
(E3) There exists a unique a⊥ ∈ E such that a ⊕ a⊥ is defined and a ⊕

a⊥ = 1.
(E4) If a ⊕ 1 is defined, then a = 0.

It is easily seen that a ⊕ 0 is always defined and equals a. If a ⊕ b is defined,
we say that a and b are orthogonal and write a ⊥ b.

In an effect algebra E another partially defined operation � can be defined
by the following rule: c � a exists and equals b if and only if a ⊕ b exists and
equals c. In particular, a⊥ = 1 � a. Moreover, if a ⊥ b, then a ⊕ b = (a⊥ �
b)⊥ = (b⊥ � a)⊥.

In an effect algebra E a partial ordering relation ≤ can be defined as follows:
a ≤ c if and only if, for some b ∈ E, a ⊕ b exists and equals c. Hence c � a is
defined if and only if a ≤ c. Moreover a ⊥ b if and only if a ≤ b⊥.

If a ∨ b and a ∧ b exist for all a, b ∈ E, then we say that E is a lattice ordered
effect algebra (otherwise called D-lattice). In this case, we define the symmetric
difference of any two elements a and b in E as a 
 b = (a ∨ b) � (a ∧ b).
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Throughout the paper, the symbol L will always denote a lattice ordered
effect algebra. Let us recall that L is an MV-algebra if and only if (a ∨ b) � b =
a � (a ∧ b) for all a, b ∈ L, while L is an orthomodular lattice if and only if
a⊥ ∧ a = 0 for every a ∈ L.

We will make use of the following properties (for the proofs we refer to
Dvurečenskij and Pulmannová, 2000).

Proposition 2.1. For all a, b, c ∈ L we have

(i) If a ≤ b, then b � a ≤ b and b � (b � a) = a.
(ii) If a ≤ b ≤ c, then c � b ≤ c � a and (c � a) � (c � b) = b � a.

(iii) If a ≤ b ≤ c, then b � a ≤ c � a and (c � a) � (b � a) = c � b.
(iv) If a ≤ b⊥ and a ⊕ b ≤ c, then c � (a ⊕ b) = (c � a) � b =

(c � b) � a.
(v) If a ≤ b ≤ c⊥, then a ⊕ b ≤ b ⊕ c and (b ⊕ c) � (a ⊕ c) = b � a.

(vi) If a ≤ b ≤ c, then a ⊕ (c � b) = c � (b � a).
(vii) If a ≤ b⊥ ≤ c⊥, then a ⊕ (b � c) = (a ⊕ b) � c.

(viii) If a ≤ c and b ≤ c, then c � (a ∨ b) = (c � a) ∧ (c � b) and c � (a ∧
b) = (c � a) ∨ (c � b).

(ix) If c ≤ a and c ≤ b, then (a ∧ b) � c = (a � c) ∧ (b � c) and (a ∨ b) �
c = (a � c) ∨ (b � c).

(x) If a ≤ c⊥ and b ≤ c⊥, then (a ∨ b) ⊕ c = (a ⊕ c) ∨ (b ⊕ c) and (a ∧
b) ⊕ c = (a ⊕ c) ∧ (b ⊕ c).

Let U be a uniformity on L. We say that U is a lattice uniformity Weber
(1991) if the operations ∨ and ∧ are uniformly continuous with respect to U .

A D-uniformity (Avallone, 2001) is a lattice uniformity which makes the
operations ⊕ and � uniformly continuous, too. The set of all D-uniformities on L

will be denoted by DU(L). It is easy to see that DU(L)—ordered by inclusion—
is a complete lattice, with the discrete uniformity and the trivial uniformity as
greatest and smallest elements, respectively.

Given U,V ⊂ L × L, we put

U ∨ V = { (a1 ∨ b1, a2 ∨ b2) : (a1, a2) ∈ U, (b1, b2) ∈ V },
U ∧ V = { (a1 ∧ b1, a2 ∧ b2) : (a1, a2) ∈ U, (b1, b2) ∈ V },
U � V = { (a1 � b1, a2 � b2) : b1 ≤ a1, b2 ≤ a2, (a1, a2) ∈ U, (b1, b2) ∈ V }.

It is known (see Weber, 1991) that a uniformity U on L is a lattice uniformity
if and only if for every U ∈ U there exists V ∈ U such that V ∨ � ⊂ U and
V ∧ � ⊂ U , where � = { (a, a) : a ∈ L }.
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Similarly, it has been shown in Avallone (2001) that a lattice uniformity U
on L is a D-uniformity if and only if for every U ∈ U there exists V ∈ U such that
V � � ⊂ U and � � V ⊂ U .

3. D-UNIFORMITIES AND D-FILTERS

Definition 3.1. A filter F of subsets of a D-lattice L is called a D-filter if it
satisfies the following:

(F1) ∀F ∈ F ∃F ′ ∈ F : ∀a, b ∈ F ′ [a ⊥ b =⇒ a ⊕ b ∈ F ];
(F2) ∀F ∈ F ∃G ∈ F : ∀a ∈ G ∀c ∈ L (a ∨ c) � c ∈ F .

The set of all D-filters on L will be denoted by FND(L).
Note that, by 2.12.1, a filter F satisfies 3.1. if and only if, for every F ∈ F ,

there exists G ∈ F such that, for all a ∈ G and all c ∈ L, one has c � (a⊥ ∧ c) ∈
F .

We shall prove, in Theorem 3.4 below, thatFND(L) is isomorphic toDU(L)
and that F is a D-filter if and only if F is the system of neighbourhoods of 0 in a
D-uniformity.

Lemma 3.2. For every a, b, c, d ∈ L such that c ≤ a, c ≤ b, d ≥ a and d ≥ b

one has (a � c)
(b � c) = a
b = (d � a)
(d � b).

Proof: Indeed, applying 2.12.1, and 2.12.1, one gets (a � c)
(b � c) =
((a � c) ∨ (b � c)) � ((a � c) ∧ (b � c)) = ((a ∨ b) � c) � ((a ∧ b) � c) = (a
∨ b) � (a ∧ b) = a
b. Similarly, applying 2.12.1, and 2.12.1, one gets (d � a)

(d � b) = ((d � a) ∨ (d � b)) � ((d � a) ∧ (d � b)) = (d � (a ∧ b )) �
(d � (a ∨ b)) = (a ∨ b) � (a ∧ b) = a
b. �

Proposition 3.3. A D-filter F on L has the following properties:

(i) ∀F ∈ F ∃G ∈ F : ∀a ∈ G ∀b ∈ L [b ≤ a =⇒ b ∈ F ];
(ii) ∀F ∈ F ∃G ∈ F : ∀a, b ∈ G a ∨ b ∈ F ;

(iii) ∀F ∈ F ∃G ∈ F : ∀x, y, z ∈ L [x
y ∈ G =⇒ (x ∨ z)
(y ∨ z)
∈ F ];

(iv) ∀F ∈ F ∃G ∈ F : ∀x, y, z ∈ L [x
y ∈ G =⇒ (x ∧ z)
(y ∧ z)
∈ F ];

(v) ∀F ∈ F ∃G ∈ F : ∀x, y, z ∈ L [x
y ∈ G, y
z ∈ G =⇒ x
z ∈
F ].

Proof:

(i) Let F ∈ F and let G ∈ F such that 3.1. is satisfied. Given any a ∈ G

and any b ∈ L with b ≤ a, put c = a � b. Then b = a � (a � b) = (a ∨
(a � b)) � (a � b) = (a ∨ c) � c ∈ F .
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(ii) Given F ∈ F , let F ′ ∈ F satisfy 3.1., and let G ∈ F satisfy 3.1. with
F ′ in place of F . If a, b ∈ G, then (a ∨ b) � b ∈ F ′. Moreover b ∈ F ′

by 3.3. Therefore a ∨ b = ((a ∨ b) � b) ⊕ b ∈ F .
(iii) Let F ∈ F and let G ∈ F such that 3.1. is satisfied. Given x, y, z such

that x
y ∈ G, we put a = x
y and c = ((x ∨ z) ∧ (y ∨ z)) � (x ∧ y)
and we show that (x ∨ z)
(y ∨ z) = (a ∨ c) � c. First observe that x ∨
y ∨ z = (x ∨ y) ∨ ((x ∨ z) ∧ (y ∨ z)). Now, applying 2.12.1 and 2.12.1,
we have:

(x ∨ z)
(y ∨ z) = (x ∨ y ∨ z) � ((x ∨ z) ∧ (y ∨ z))

= ((x ∨ y) ∨ ((x ∨ z) ∧ (y ∨ z))) � ((x ∨ z) ∧ (y ∨ z))

= (((x
y) ⊕ (x ∧ y)) ∨ ((x ∨ z) ∧ (y ∨ z))) � ((x ∨ z) ∧ (y ∨ z))

= ((a ⊕ (x ∧ y)) ∨ (c ⊕ (x ∧ y))) � (c ⊕ (x ∧ y))

= ((a ∨ c) ⊕ (x ∧ y)) � (c ⊕ (x ∧ y)) = (a ∨ c) � c.

(iv) Given F ∈ F , take G ∈ F such that 3.3 is satisfied, and let x, y, z such
that x
y ∈ G. By Lemma 3.2 we have x⊥
y⊥ = x
y, and there-
fore (x ∧ z)
(y ∧ z) = (x⊥ ∨ z⊥)⊥
(y⊥ ∨ z⊥)⊥ = (x⊥ ∨ z⊥)
(y⊥ ∨
z⊥) ∈ F .

(v) Given F ∈ F , let F1 ∈ F satisfy 3.3, let F2 ∈ F satisfy 3.3 with F1 in
place of F , let F3 ∈ F satisfy 3.3 with F2 in place of F and let G ∈ F
satisfy 3.3 with F3 in place of F . If a, b, c ∈ L are such that both x
y and
x
z belong to G, then a = (x ∨ y ∨ z) � (y ∨ z) = ((x ∨ (x ∨ z))
(y ∨
(y ∨ z)) ∈ F3 and b = (y ∨ z) � z = (y ∨ z)
(z ∨ z) ∈ F3 also. It fol-
lows that (x ∨ y ∨ z) � z = a ⊕ b ∈ F2, so that (x ∨ z) � z ∈ F1. Sim-
ilarly one shows that (x ∨ z) � x ∈ F1. Hence x
z = ((x ∨ z) � z) ∨
((x ∨ z) � x) ∈ F . �

Theorem 3.4.

(a) If U is a D-uniformity, then the filter FU of neighbourhoods of 0 in U is
a D-filter.

(b) Let F be a D-filter and, for each F ∈ F , let F
 = { (a, b) ∈ L × L :
a
b ∈ F }. Then B = { F
 : F ∈ F } is a base for a D-uniformity whose
filter of neighbourhoods of 0 is F .

(c) The mapping �:U �→ FU is an order-isomorphism of DU(L) onto
FND(L) (both ordered by inclusion).

Proof:

(a) Since ⊕ is continuous at (0, 0), for every F ∈ FU there exists F ′ ∈ FU
such that if (a, b) ∈ F ′ × F ′ and a ⊥ b, then a ⊕ b ∈ F . This gives 3.1.
To prove 3.1., let F ∈ FU and let U ∈ U with U (0) ⊆ F . By uniform
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continuity of � and ∨, there exist V1, V2 ∈ U such that V1 � � ⊂ U

and V2 ∨ � ⊂ V1. Now put G = V2(0), and consider any a ∈ G. Then
(0, a) ∈ V2, so that for every c ∈ L we have (c, a ∨ c) ∈ V2 ∨ � ⊂ V1 and
hence (0, (a ∨ c) � c) ∈ V1 � � ⊂ U which means that (a ∨ c) � c ∈
U (0) ⊆ F .

(b) Clearly F
 is symmetric and � ⊂ F
 for every F ∈ F . Moreover, given
F1, F2 ∈ F , let F3 = F1 ∩ F2. Then F



3 = F



1 ∩ F



2 . Finally, if F ∈ F

and G ∈ F satisfies 3.33.3, we have that G
 ◦ G
 ⊆ F
. Therefore B
is a base for a uniformity U .

Now fix U ∈ U . We show that there exists V ∈ U such that both
V ∨ � and V ∧ � are contained in U . Let G ∈ F satisfy 3.33.3 and
put V = G
. Given (x, y) ∈ V ∨ �, take a, b, c ∈ L with x = a ∨ c,
y = b ∨ c and (a, b) ∈ V , that is a
b ∈ G. By 3.33.3, we have x
y =
(a ∨ c)
(b ∨ c) ∈ F , that is (x, y) ∈ F
. We conclude that V1 ∨ � ⊂
F
 ⊆ U . Since the same G also satisfies 3.33.3 one sees in a simi-
lar way that V ∧ � ⊂ F
 ⊆ U too. Next, we show that there exists
V ∈ U such that both V � � and � � V are contained in U . Choose
F ∈ F such that F
 ⊆ U and put V = F
. By Lemma 3.2, one has
F
 � � = { (a � c, b � c) : c ≤ a, c ≤ b, a
b ∈ F } = { (a � c, b �
c) : c ≤ a, c ≤ b, (a � c)
(b � c) ∈ F } = F
 and similarly one sees
that � � F
 = F
. Hence V � � ⊂ U and � � V ⊂ U .

It remains to prove that the filter of neighbourhoods of 0 in U
coincides with F . First observe that, given any F ∈ F , we have

F
(0) = {a ∈ L : (0, a) ∈ F
} = {a ∈ L : a
0 ∈ F} = F (1)

and therefore F is a neighbourhood of 0 in U . Conversely, if G is a
neighbourhood of 0 in U , since B is a base for U , there exists F ∈ F
such that F
(0) ⊆ G. By 1, this means that F ⊂ G and hence G ∈ F ,
because F is a filter.

(c) It follows from 3.4 that � maps DU(L) into FND(L). Now for any F ∈
FND(L) let �(F) denote the D-uniformity constructed as in 3.4. Since
�(�(F)) = F , we have that � is onto. Moreover if F1,F2 ∈ DU(L)
and F1 ⊂ F2, then {F
 : F ∈ F1} ⊆ {F
 : F ∈ F1} whence �(F1) ⊆
�(F2). On the other hand, if U1,U2 ∈ DU(L) and U1 ⊂ U2, then the
topology induced by U1 is coarser than the one induced by U2, hence
�(U1) ⊆ �(U2).

Finally we show that � = �−1, so that � is one-to-one. Given
F ∈ FND(L), we consider any U ∈ DU(L) such that F = �(U) and
prove that �(F) = U . If F ∈ F , then it is a neighbourhood of 0,
hence there is U ∈ U such that U (0) ⊆ F . By uniform continuity
of 
, there exists V ∈ U with V 
� ⊂ U . Now let (a, b) ∈ V . We
have (0, a
b) = (a
a, b
a) ∈ V 
� ⊂ U , whence a
b ∈ U (0) ⊆ F .
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Hence V ⊂ F
 and thereforeU is finer than �(F). Conversely let U ∈ U .
Consider a symmetric V1 ∈ U with V1 ◦ V1 ⊂ U , and take V2, V3 ∈ U
such that V2 ∨ � ⊂ V1 and V3 ⊕ � ⊂ V2. Put F = V3(0), so that F ∈
F . If (a, b) ∈ F
, we have a
b ∈ F , that is (0, a
b) ∈ V3. It fol-
lows that (a ∧ b, a ∨ b) = (0 ⊕ (a ∧ b), (a
b) ⊕ (a ∧ b)) ∈ V3 ⊕ � ⊂
V2, hence (a, a ∨ b) = ((a ∧ b) ∨ a, (a ∨ b) ∨ a) ∈ V2 ∨ � ⊂ V1 and,
similarly (b, a ∨ b) ∈ V1. Since V −1

1 = V1 we also have (a ∨ b, b) ∈ V ,
and then (a, b) ∈ V1 ◦ V1 ⊂ U . Therefore F
 ⊆ U . We conclude that
U ⊂ �(F), whence the equality. �

The reader should note that the above theorem implies, as particular cases, the
results of Barbieri and Weber (1998, Theorem 2.1) and Graziano (2000, Theorem
3.6) for MV-algebras, as well as Weber (1995, Theorem 1.1) for orthomodular
lattices.

From Theorem 3.43.4, by restricting to principal filters, one can deduce the
order isomorphism between D-congruences and D-ideals, which has been found
using a different approach (Avallone and Vitolo, in 2003, Theorem 4.5).

Proposition 3.5. Let F be the filter of neighbourhoods of 0 in a D-uniformity
U . For every F ∈ F , let F⊕ = { (a, b) ∈ L × L : ∃h, k ∈ F : h ⊥ a, k ⊥ b, a ⊕
h = b � k } and F� = { (a, b) ∈ L × L : ∃i, j ∈ F : i ≤ a, j ≤ b, a � i = b �
j }. Then both { F⊕ : F ∈ F } and { F� : F ∈ F } are bases for U .

Proof: It suffices to show that, for every F ∈ F , there exist F1, F2 ∈ F such
that F⊕, F� ⊇ F



1 and F⊕

2 , F�
2 ⊆ F
.

Let F1 ∈ F satisfy 3.33.3. Given (a, b) ∈ F


1 , we put h = (a ∨ b) � a, k =

(a ∨ b) � b, i = a � (a ∧ b) and j = b � (a ∧ b). Since h ≤ (a ∨ b) � (a ∧ b) =
a
b ∈ F1, we have h ∈ F . In the same way one sees that k, i and j belong to
F , too. Moreover we have a ⊕ h = a ⊕ ((a ∨ b) � a) = a ∨ b = b ⊕ ((a ∨ b) �
b) = b ⊕ k, so that (a, b) ∈ F⊕. Similarly, applying 2.12.1, we have a � i =
a � (a � (a ∧ b)) = a ∧ b = b � (b � (a ∧ b)) = b � j, so that (a, b) ∈ F�.

Now let G ∈ F satisfy 3.33.3, and take F2 ∈ F satisfying 3.33.3 with G in
place of F . Given (a, b) ∈ F⊕

2 , there are h, k ∈ F2 such that h ⊥ a, k ⊥ b and
a ⊕ h = b ⊕ k. Since a ∨ b ≤ (a ⊕ h) ∨ (b ⊕ k) = a ⊕ h = b ⊕ k, we get (a ∨
b) � a ≤ h and (a ∨ b) � b ≤ k, so that both (a ∨ b) � a and (a ∨ b) � b belong
to G. By 2.12.1, we have a
b = ((a ∨ b) � a) ∨ ((a ∨ b) � b) hence a
b ∈ F ,
i.e. (a, b) ∈ F
. Similarly, given (a, b) ∈ F�

2 , take i, j ∈ F2 such that i ≤ a,
j ≤ b and a � i = b � j . Observe that a � i = (a � i) ∧ (b � j ) ≤ a ∧ b thus,
applying 2.12.1, i = a � (a � i) ≥ a � (a ∧ b). It follows that a � (a ∧ b) ∈ G,
and in the same way one sees that b � (a ∧ b) ∈ G, too. By 2.12.1, we have
a
b = (a � (a ∧ b)) ∨ (b � (a ∧ b)) hence a
b ∈ F , i.e. (a, b) ∈ F
. �
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Given F,G ⊂ L, we will put F ⊕ G = { f ⊕ g : f ⊥ g, f ∈ F, g ∈ G }.
Using this notation, condition 3.1 may be rewritten as follows: ∀F ∈ F ∃F ′ ∈
F : F ′ ⊕ F ′ ⊆ F.

Proposition 3.6.

(a) If F ,G ∈ FND(L), then { F ⊕ G : F ∈ F , G ∈ G } is a base for F ∧
G in FND(L).

(b) If � ⊂ FND(L), then
∨

� in FND(L) is the set of all intersec-
tions of finite subsets of

⋃
�. In particular G1 ∨ G2 = { G1 ∩ G2 : G1 ∈

G1, G2 ∈ G2 } for all G1,G2 ∈ FND(L).

Proof:

(a) First observe that

∀F ∈ F ∀G ∈ G F ∪ G ⊂ F ⊕ G. (2)

Indeed, since 0 ∈ G, one has F = { f ⊕ 0 : f ∈ F } ⊆ { f ⊕ g : f ⊥
g, f ∈ F, g ∈ G } = F ⊕ G, and similarly for G. In particular, all sets
F ⊕ G with F ∈ F and G ∈ G are nonempty. Now, given F1 ⊕ G1

and F2 ⊕ G2, with F1, F2 ∈ F and G1,G2 ∈ G, let F = F1 ∩ F2

and G = G1 ∩ G2. We have F ⊕ G = { f ⊕ g : f ⊥ g, f ∈ F, g ∈
G } ⊆ { f ⊕ g : f ⊥ g, f ∈ F1, g ∈ G1 } = F1 ⊕ G1 and, similarly,
F ⊕ G ⊂ F2 ⊕ G2. Hence F ⊕ G ⊂ (F1 ⊕ G1) ∩ (F2 ⊕ G2). There-
fore { F ⊕ G : F ∈ F , G ∈ G } is a base for a filter which we denote
by H.

We prove that H is a D-filter. Given any H ∈ H, let F ∈ F
and G ∈ G such that F ⊕ G ⊂ H . Take F ′, F ′′ ∈ F satisfying 3.1.
and 3.1. respectively, and choose G′,G′′ ∈ G in a similar way. Clearly
H ′ = F ′ ⊕ G′ and H ′′ = F ′′ ⊕ G′′ belong to H. We show that H ′

satisfies 3.1. and H ′′ satisfies 3.1. (with H in place of F ). If a and
b are orthogonal elements of H ′, then a = f1 ⊕ g1 and b = f2 ⊕ g2,
where f1, f2 ∈ F ′ and g1, g2 ∈ G′. Note that f1 ⊥ f2 and g1 ⊥ g2,
hence f = f1 ⊕ f2 ∈ F and g = g1 ⊕ g2 ∈ G. Therefore a ⊕ b =
(f1 ⊕ g1) ⊕ (f2 ⊕ g2) = (f1 ⊕ f2) ⊕ (g1 ⊕ g2) = f ⊕ g∈ F ⊕ G⊂H .
Now let a ∈ H ′′ and c ∈ L. Let f ∈ F ′′ and g ∈ G′′ such that
a = f ⊕ g, and put d = (f ∨ c) � f . We have f ′ = (f ∨ c) � c ∈ F

and g′ = (g ∨ d) � d ∈ G. Since g ∨ d = g′ ⊕ d and f ∨ c =
f ⊕ d, applying 2.12.1 and 2.12.1, we obtain (a ∨ c) � c =
(a ∨ f ∨ c) � c = ((f ⊕ g) ∨ (f ∨ c)) � c = ((f ⊕ g) ∨ (f ⊕
d)) � c = (f ⊕ (g ∨ d)) � c = (f ⊕ (g ∨ d)) � c = (f ⊕ (g′ ⊕ d)) �
c = ((f ⊕ d) ⊕ g′) � c = ((f ∨ c) ⊕ g′) � c = ((f ∨ c) � c) ⊕ g′ =
f ′ ⊕ g′ ∈ F ⊕ G ⊂ H.
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It follows from 2 that both F and G are finer than H. To complete
the proof, consider any D-filter H′ such that both F and G are finer than
H′. We show that H′ ⊆ H. Let H ∈ H. By 3.1, there exists H ′ ∈ H′

such that H ′ ⊕ H ′ ⊆ H . Since H ′ ∈ F ∩ G we get H ′ ⊕ H ′ ∈ H and
hence H ∈ H, too.

(b) Let F be the set of intersections of finite subsets of
⋃

�. We show that
F is a filter.

Let F1, F2 ∈ F . One has F1 = ⋂
F1 and F1 = ⋂

F1, whereF1 and
F2 are finite subsets of

⋃
�. If G = F1 ∩ F2, then G ∈ F because it is

the intersection of F1 ∪ F2, which is again a finite subset of
⋃

�. Now
let F ∈ F . Then F = ⋂n

i=1 Fi , where Fi ∈ Gi and Gi ∈ � for each i ∈
{1, 2, . . . , n}. If G ⊃ F , let A = G \ F . For each i, one has Gi = A ∪
Fi ∈ Gi , and

⋂n
i=1 Gi = ⋂n

i=1(A ∪ Fi) = A ∪ ⋂n
i=1 Fi = A ∪ F = G.

Hence G ∈ F .
Now we check properties 3.1 and 3.1. Let F ∈ F . As above,

F = ⋂n
i=1 Fi , with Fi ∈ Gi ∈ �. For each i, take F ′

i and Gi in Gi satisfy-
ing 3.1. and 3.1. respectively (with Fi in place of F ). Put F ′ = ⋂n

i=1 F ′
i

and G = ⋂n
i=1 Gi . Clearly F ′ and G belong to F . We show that F ′

satisfies 3.1. and G satisfies 3.1. If a and b are orthogonal elements
of F ′, then for each i ∈ {1, 2, . . . , n} we have a, b ∈ F ′

i and hence
a ⊕ b ∈ Fi . Therefore a ⊕ b ∈ F . Similarly, if a ∈ G and c ∈ L, then
for each i ∈ {1, 2, . . . , n} we have a ∈ Gi and hence (a ∨ c) � c ∈ Fi .
Therefore (a ∨ c) � c ∈ F .

Since it is clear that each G ∈ � is contained in F (indeed every G

in G is the intersection of {G}, which a finite subset of
⋃

�), it remains
to prove that any D-filter which is finer than all filters in � is finer than
F , too. So let G ′ ∈ FND(L) such that G ⊂ G ′ for every G ∈ �. Given
F ∈ F , one has F = ⋂n

i=1 Fi where Fi ∈ Gi ∈ �, hence Fi ∈ G ′, for
each i ∈ {1, 2, . . . , n}. Since G ′ is a filter, we have F ∈ G ′. We conclude
that F ⊂ G ′ �

Corollary 3.7. DU(L) and FND(L) are distributive (complete) lattices.

Proof: By Theorem 3.43.4, it is enough to consider FND(L). Let F1, F2 and
G be D-filters. We have to verify that (F ∨ G1) ∧ (F ∨ G2) ⊆ F ∨ (G1 ∧ G2).

Given H ∈ (F ∨ G1) ∧ (F ∨ G2), take F1, F2 ∈ F and G1,G2 ∈ G with
(F1 ∩ G1) ⊕ (F2 ∩ G2) ⊆ H . Put F = F1 ∩ F2 and let F ′ ∈ F satisfying 3.33.3.
We complete the proof by showing that F ′ ∩ (G1 ⊕ G2) ⊆ (F1 ∩ G1) ⊕ (F2 ∩
G2).

Let a ∈ F ′ ∩ (G1 ⊕ G2). Choose a1 ∈ G1 and a2 ∈ G2 such that a =
a1 ⊕ a2. Since a1 ≤ a and a ∈ F ′, one has a1 ∈ F ⊂ F1 and hence a1 ∈ F1 ∩ G1.
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Similarly one sees that a2 ∈ F2 ∩ G2. Therefore a = a1 ⊕ a2 ∈ (F1 ∩ G1) ⊕
(F2 ∩ G2). �

Proposition 3.8. If F ,G ∈ FND(L), then { F ∧ G : F ∈ F , G ∈ G } is a base
for F ∨ G, where F ∧ G = { f ∧ g : f ∈ F, g ∈ G }.

Proof: Given F ∈ F and G ∈ G, since F ∩ G = { a ∧ a : a ∈ F ∩ G } ⊆ { f ∧
g : f ∈ F, g ∈ G } = F ∧ G, it remains to prove that there exist F ′ ∈ F and
G′ ∈ G such that F ′ ∧ G′ ⊆ F ∩ G. Take F ′ ∈ F satisfying 3.33.3, and let G′

be a member of G satisfying 3.33.3 also, but with G in place of F . If f ∈ F ′

and g ∈ G′, then f ∧ g ≤ f hence f ∧ g ∈ F and, similarly, f ∧ g ≤ g hence
f ∧ g ∈ G. Therefore f ∧ g ∈ F ∩ G. �

4. GENERATING D-UNIFORMITIES BY MEANS OF K -SUBMEASURES

Definition 4.1. Let k ≥ 1. We say that a function η: L → [0,+∞] is a k-
submeasure if the following conditions hold

(S1) η(0) = 0;
(S2) ∀a, b ∈ L [a ≤ b =⇒ η(a) ≤ η(b)];
(S3) ∀a, b ∈ L [a ⊥ b =⇒ η(a ⊕ b) ≤ kη(a) + η(b)];
(S4) ∀a, b ∈ L η((a ∨ b) � b) ≤ kη(a) .

A 1-submeasure is simply called a submeasure.
Observe that, if L is an MV-algebra, then every function η: L → [0,+∞]

satisfying 4.1, 4.1, and 4.1 with k = 1 is a submeasure.
For every ε > 0, put Sε = { (x, y) ∈ [0,+∞[ × [0,+∞[ : |x − y| < ε } ∪

{(+∞,+∞)}. Then { Sε : ε > 0 } is base for a uniformity S on [0,+∞] whose
relativization to [0,+∞[ is the usual uniformity, while +∞ is a uniformly isolated
point. In the sequel we will endow [0,+∞] with this uniformity.

Proposition 4.2. For every k-submeasure η there exists a D-uniformity U(η)
which is the weakest D-uniformity making η uniformly continuous.

Proof: For each ε > 0, let Fε = { a ∈ L : η(a) < ε }. Since Fε1 ∩ Fε2 =
Fmin{ε1,ε2}, the collection { Fε : ε > 0 } is a base for a filter F . We show that F is
a D-filter. Fix F in F , and take ε > 0 with Fε ⊂ F . Then F ′ = F ε

k+1
satisifies 3.1

and G = F ε
k

satisfies 3.1.
From Theorem 3.43.4, the sets F


ε form a base for a D-uniformity
U(η). Now we show that η is U(η)-uniformly continuous. Let ε > 0 and
choose δ = ε

k
. For every (a, b) ∈ F



δ , we have η(a ∨ b) = η((a
b) ⊕ (a ∧ b)) ≤

kη(a
b) + η(a ∧ b) < η(a ∧ b) + kδ = η(a ∧ b) + ε. Thus, if η(a ∨ b) = +∞,
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then η(a ∧ b) = +∞ whence, by monotonicity, η(a) = η(b) = +∞. Otherwise,
again by monotonicity, η(a) and η(b) are both finite, and moreover |η(a) − η(b)| ≤
|η(a ∨ b) − η(a ∧ b)| < ε. Hence, in any case, (η(a), η(b)) ∈ Sε.

Finally, let V be a D-uniformity on L making η uniformly continuous. We
prove that U(η) ≤ V , which, by Theorem 3.43.4, is equivalent to F ⊂ G, where G
is the filter of neighbourhoods of 0 in V . Take any F ∈ F , and choose ε > 0 with
Fε ⊂ F . Since η is continuous at 0 with respect to V , and η(0) = 0, there is some
G ∈ G such that if a ∈ G then η(a) < ε, i.e. a ∈ Fε. It follows that G ⊂ Fε ⊂ F ,
hence F ∈ G. �

Our aim is to prove a sort of converse of the previous result, namely Theo-
rem 4.4 below.

Proposition 4.3. Let k,m ≥ 1, and d be a pseudometric such that for all a, b,

c ∈ L:

(P1) d(a ∧ c, b ∧ c) ≤ d(a, b);
(P2) a ⊥ c, b ⊥ c =⇒ d(a ⊕ c, b ⊕ c) ≤ kd(a, b);
(P3) d((a ∨ c) � c, (b ∨ c) � c) ≤ md(a, b);
(P4) d((a ∨ c) � c, 0) ≤ kd(a, 0).

For each a ∈ L, put η̃(a) = d(a, 0). Then η̃ is a k-submeasure and U(η̃) coincides
with the uniformity induced by d.

Proof: It is clear that η̃ satisfies 4.1. Moreover, if a ≤ b, by 4.3 we have
η̃(a) = d(a, 0) = d(b ∧ a, 0 ∧ a) ≤ d(b, 0) = η̃(b) and 4.1 is proved. Now if
a, b ∈ L are orthogonal, then, applying the triangular inequality and 4.3,
we get η̃(a ⊕ b) = d(a ⊕ b, 0) ≤ d(a ⊕ b, b) + d(b, 0) ≤ kd(a, 0) + d(b, 0) =
kη̃(a) + η̃(b), that is 4.1. Similarly, taking any a, b ∈ L, by 4.3 we get η̃((a ∨
b) � b) = d((a ∨ b) � b, 0) ≤ kd(a, 0) = kη̃(a), that is 4.1.

Denote by V the uniformity induced by d. The sets Vε = { (a, b) ∈ L × L :
d(a, b) < ε } form a base for V , while the sets F


ε = { (a, b) ∈ L × L : η̃(a
b) <

ε } form a base for U(η̃), as we have seen in Proposition 4.2. We show that for
every ε > 0 there exists δ > 0 such that F



δ ⊆ Vε and Vδ ⊂ F


ε . This will prove
that V = U(η̃).

Take δ = ε
2km

. Given (a, b) ∈ F


δ , applying 4.3 and 4.3, we have d(a, b) ≤

d(a, a ∧ b) + d(a ∧ b, b) = d((a ∨ b) ∧ a, (a ∧ b) ∧ a) + d((a ∧ b) ∧ b, (a∨b)
∧ b) ≤ 2d(a ∨ b, a ∧ b) = 2d((a
b) ⊕ (a ∧ b), 0 ⊕ (a ∧ b)) ≤ 2kd(a
b, 0) =
2kη̃(a
b) < 2kδ ≤ ε, so that (a, b) ∈ Vε. Therefore F



δ ⊆ Vε.

Now let (a, b) ∈ Vδ . Recall that, by 2.12.1, (a
b) � ((a ∨ b) � a) =
a � (a ∧ b) and, by 2.12.1, (a � (a ∧ b)) ∧ (b � (a ∧ b)) = 0. Hence,
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applying first the triangle inequality and then 4.3, 4.3, 4.3 and again 4.3,
we obtain η̃(a
b) = d(a
b, 0) ≤ d(a
b, (a ∨ b) � a) + d((a ∨ b) � a, 0) =
d(((a ∨ b) � a) ⊕ (a � (a ∧ b)), (a ∨ b) � a) + d((a ∨ b) � a, (a ∨ a) � a) ≤
kd(a � (a ∧ b), 0) + md(a, b) = kd((a � (a ∧ b)) ∧ (a � (a ∧ b)), (b � (a ∧
b)) ∧ (a � (a ∧ b))) + m d(a, b) ≤ kd(a � (a ∧ b), b � (a ∧ b)) + md(a, b) ≤
kmd(a, b) + md(a, b) < (k + 1)mδ ≤ ε so that (a, b) ∈ F


ε . We conclude that
Vδ ⊂ F


ε . �

Recall that if G is a topological Abelian group, then a mapping µ: L → G is
called a modular measure if the following hold, for all a, b ∈ L:

(M1) µ(a) + µ(b) = µ(a ∨ b) + µ(a ∧ b).
(M2) If a ⊥ b, then µ(a ⊕ b) = µ(a) + µ(b).

Moreover, the sets {(a, b) ∈ L × L : ∀r ≤ a
b µ(r) ∈ W}, where W is a neigh-
bourhood of 0 in G, form a base for a D-uniformityU (see Avallone, 2001, Theorem
3.2). This U is called the D-uniformity generated by µ. Note that, in case µ is
positive real-valued (hence in particular a submeasure), U agrees with the U(µ)
constructed in Proposition 2.

Theorem 4.4. Let U be a D-uniformity on L. Then:

(a) For every k > 1 there is a family {η̃λ}λ∈	 of k-submeasures with U =
sup
λ∈	

U(η̃λ). Moreover, if U has a countable base, we can choose |	| = 1.

(b) If U is generated by a modular measure µ: L → G, where G is a topo-
logical Abelian group, then there is a family {η̃λ}λ∈	 of submeasures with
U = sup

λ∈	

U(η̃λ).

(c) If L is an MV-algebra, there is a family {η̃λ}λ∈	 of submeasures with
U = sup

λ∈	

U(η̃λ).

Proof:

(a) For every a, b ∈ L, put f (a, b) = a ∧ b, g(a, b) = (a ∧ b⊥) ⊕ b and
h(a, b) = (a ∨ b) � b. By (Weber, 1993, Prop. 1.1(b)), U has base con-
sisting of sets U such that, for every (a, a′) ∈ U and every b ∈ L,
(f (a, b), f (a′, b)) = (f (b, a), f (b, a′)) ∈ U. Since g and h are U-
uniformly continuous, from (Weber, 1993, Prop. 1.2) it follows that U is
generated by a family {dλ}λ∈	 of pseudometrics (a single pseudometric
if 	 is countable) such that, for every λ ∈ 	 and all a, a′, b, b′ ∈ L:

dλ(f (a, b), f (a′, b′)) ≤ dλ(a, a′) + dλ(b, b′),

dλ(g(a, b), g(a′, b′)) ≤ k(dλ(a, a′) + dλ(b, b′)),

dλ(h(a, b), h(a′, b′)) ≤ k(dλ(a, a′) + dλ(b, b′)).
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Clearly each dλ satisfies 4.3 and 4.3, as well as 4.3 with m = k,
hence also 4.3. Therefore, applying Proposition 4, the conclusion
follows.

(b) Let {pλ}λ∈	 be a family of group seminorms generating the topology of
G. By (Fleischer and Traynor, 1982, Theorem 3), U is generated by the
family of pseudometrics {dλ}λ∈	 where, for every λ ∈ 	,

dλ(a, b) = sup{ pλ(µ(r) − µ(s)) : r, s ∈ [a ∧ b, a ∨ b] }.
Moreover dλ satisifies 4.3 and the following:

∀a, b, c ∈ L dλ(a ∨ c, b ∨ c) ≤ dλ(a, b). (3)

We can complete the proof, applying Proposition 4.3, once we have
shown that each dλ satisfies both 4.3 and 4.3 with m = k = 1, hence
also 4.3.

Fix λ ∈ 	. Given a, b ∈ L, observe first that dλ(a, b) =
sup{ pλ(µ(r)) : r ≤ a
b }. Now let c ∈ L. By Lemma 3.2 we have
((a ∨ c) � c)
((b ∨ c) � c) = (a ∨ c)
(b ∨ c). Therefore, by 3, dλ((a ∨
c) � c), ((b ∨ c) � c) = dλ(a ∨ c, b ∨ c) ≤ dλ(a, b). Finally, if c ⊥ a

and c ⊥ b, then, again by 2, we have (a ⊕ c)
(b ⊕ c) = a
b. Hence
dλ(a ⊕ c, b ⊕ c) = dλ(a, b).

(c) Define f , g and h as in the proof of 4. By (Weber, 1993, Prop. 1.5),
since g is associative and distributive with respect to f , the unifor-
mity U has a base consisting of sets U such that, for every (a, a′) ∈
U and every b ∈ L, (f (a, b), f (a′, b)) = (f (b, a), f (b, a′)) ∈ U and
(g(a, b), g(a′, b)) = (g(b, a), g(b, a′)) ∈ U. Moreover h is U-uniformly
continuous, and therefore from (Weber, 1993, Prop. 1.2) it follows that,
for any m > 1, U is generated by a family {dλ}λ∈	 of pseudometrics (a
single pseudometric if 	 is countable) such that, for every λ ∈ 	 and all
a, a′, b, b′ ∈ L:

dλ(f (a, b), f (a′, b′)) ≤ dλ(a, a′) + dλ(b, b′),

dλ(g(a, b), g(a′, b′)) ≤ (dλ(a, a′) + dλ(b, b′)),

dλ(h(a, b), h(a′, b′)) ≤ m(dλ(a, a′) + dλ(b, b′)).

Clearly each dλ satisfies 4.3, 4.3 with k = 1 and 4.3. It re-
mains to show that 4.3 with k = 1 is satisified, too. Let a, c ∈ L.
By 4.3, we have dλ((a ∨ c) � c, 0) = dλ(a � (a ∧ c), 0) = dλ((a ∧ (a �
(a ∧ c)), 0 ∧ (a � (a ∧ c))) ≤ dλ(a, 0). �

The reader should note that 4.44.4 was already proved in Barbieri and Weber
(1998, Theorem 2.5).
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